National Repository of Grey Literature 9 records found  Search took 0.00 seconds. 
3D-printed calibration phantoms for imaging systems
Fasura, Dominik ; Harabiš, Vratislav (referee) ; Dostál, Marek (advisor)
This bachelor thesis deals with the production of calibration phantoms for imaging systems using 3D printing. It presents the calibration methods according to the recommendations of the state Office for Nuclear Safety (SÚJB) and the calibration phantoms used at the Brno University Hospital. Furthermore, the basic theory of 3D printing, the technologies used, modification of the model in the slicer, setting parameters for subsequent printing. Calibration phantoms are modelled in Fusion 360 and then printed on Original Prusa i3 MK3S+ printer with MMU2S upgrade. Subsequently, the calibration phantoms are tested on computed tomography. The results are compared with the available phantoms at the department.
Dynamics of paramagnetic complexes observed by Nuclear Magnetic Resonance
Blahut, Jan ; Hermann, Petr (advisor) ; Botta, Mauro (referee) ; Dračínský, Martin (referee)
In this Thesis, structure and dynamics of paramagnetic complexes for medical application are studied by Nuclear Magnetic Resonance (NMR). It focuses mainly on development of contrast agents (CA) for Magnetic Resonance Imaging (MRI) which is one of the most effective radiodiagnostic method nowadays. Most of the MRI CAs contains paramagnetic complexes of d- and f-metal ions. The presence of unpaired electron in proximity of NMR active nuclei has two main effects: paramagnetically induced shift and paramagnetically induced relaxa- tion. Both processes can dramatically change the NMR spectrum and often make it unobservable at all. Nevertheless, in many cases, acquisition of such spectra is possible and sometimes even less time-consuming than observation of diamag- netic molecules. Enhanced T1 relaxation allows faster pulse sequence repetition and increased chemical shift dispersion may lead to resolution of originally over- lapped signals. Moreover, the analysis of paramagnetic effects can provide useful information about the structure and dynamics of the studied system. Theoretical background of these effects is described in the Introduction of the Thesis. In the first part of Discussion in the Thesis, a new class of contrast agents for 19F-MRI based on nickel(II) and cobalt(II/III) ions is introduced...
Dynamics of paramagnetic complexes observed by Nuclear Magnetic Resonance
Blahut, Jan
In this Thesis, structure and dynamics of paramagnetic complexes for medical application are studied by Nuclear Magnetic Resonance (NMR). It focuses mainly on development of contrast agents (CA) for Magnetic Resonance Imaging (MRI) which is one of the most effective radiodiagnostic method nowadays. Most of the MRI CAs contains paramagnetic complexes of d- and f-metal ions. The presence of unpaired electron in proximity of NMR active nuclei has two main effects: paramagnetically induced shift and paramagnetically induced relaxa- tion. Both processes can dramatically change the NMR spectrum and often make it unobservable at all. Nevertheless, in many cases, acquisition of such spectra is possible and sometimes even less time-consuming than observation of diamag- netic molecules. Enhanced T1 relaxation allows faster pulse sequence repetition and increased chemical shift dispersion may lead to resolution of originally over- lapped signals. Moreover, the analysis of paramagnetic effects can provide useful information about the structure and dynamics of the studied system. Theoretical background of these effects is described in the Introduction of the Thesis. In the first part of Discussion in the Thesis, a new class of contrast agents for 19F-MRI based on nickel(II) and cobalt(II/III) ions is introduced...
Complexes of cyclen-based macrocyclic ligands with a phosphinate pendant arm
Urbanovský, Peter
Lanthanide(III) complexes of DOTA derivatives are utilized in the medical imaging techniques such as magnetic resonance imaging (MRI), magnetic resonance angiography (MRA), and magnetic resonance spectroscopy (MRS), nuclear imaging (PET and SPECT), or optical methods (luminescence). It has been shown that relaxometric parameters of the Gd(III) complexes of DOTA derivatives with a phosphinic acid pendant arm (Gd-DO3APR ) can reach optimal values (e.g. water residence time, τM, being close to ~10 ns). The relaxometric parameters can be further modified through the phosphorus substituents. It is also known that the complexes possess a high thermodynamic stability and they are kinetically inert. The main goal of this Thesis is an investigation of the effect of pendant amino group protonation in substituents bound to the phosphorus atom on properties of the complexes. Thus in this Thesis, DOTA derivatives with the phosphinic acid pendant arm with an amino group and their complexes were prepared and characterized. The complexes are intended as contrast agents for molecular imaging techniques (mainly for MRI and 31 P MRS). The first part of the Thesis introduces two new versatile "phospha-Mannich" protocols performed under mild conditions. Amino-H-phosphinic acids (AHPAs) were synthesized with excess of...
Complexes of cyclen-based macrocyclic ligands with a phosphinate pendant arm
Urbanovský, Peter
Lanthanide(III) complexes of DOTA derivatives are utilized in the medical imaging techniques such as magnetic resonance imaging (MRI), magnetic resonance angiography (MRA), and magnetic resonance spectroscopy (MRS), nuclear imaging (PET and SPECT), or optical methods (luminescence). It has been shown that relaxometric parameters of the Gd(III) complexes of DOTA derivatives with a phosphinic acid pendant arm (Gd-DO3APR ) can reach optimal values (e.g. water residence time, τM, being close to ~10 ns). The relaxometric parameters can be further modified through the phosphorus substituents. It is also known that the complexes possess a high thermodynamic stability and they are kinetically inert. The main goal of this Thesis is an investigation of the effect of pendant amino group protonation in substituents bound to the phosphorus atom on properties of the complexes. Thus in this Thesis, DOTA derivatives with the phosphinic acid pendant arm with an amino group and their complexes were prepared and characterized. The complexes are intended as contrast agents for molecular imaging techniques (mainly for MRI and 31 P MRS). The first part of the Thesis introduces two new versatile "phospha-Mannich" protocols performed under mild conditions. Amino-H-phosphinic acids (AHPAs) were synthesized with excess of...
Complexes of cyclen-based macrocyclic ligands with a phosphinate pendant arm
Urbanovský, Peter ; Hermann, Petr (advisor) ; Lyčka, Antonín (referee) ; Pinkas, Jiří (referee)
Lanthanide(III) complexes of DOTA derivatives are utilized in the medical imaging techniques such as magnetic resonance imaging (MRI), magnetic resonance angiography (MRA), and magnetic resonance spectroscopy (MRS), nuclear imaging (PET and SPECT), or optical methods (luminescence). It has been shown that relaxometric parameters of the Gd(III) complexes of DOTA derivatives with a phosphinic acid pendant arm (Gd-DO3APR ) can reach optimal values (e.g. water residence time, τM, being close to ~10 ns). The relaxometric parameters can be further modified through the phosphorus substituents. It is also known that the complexes possess a high thermodynamic stability and they are kinetically inert. The main goal of this Thesis is an investigation of the effect of pendant amino group protonation in substituents bound to the phosphorus atom on properties of the complexes. Thus in this Thesis, DOTA derivatives with the phosphinic acid pendant arm with an amino group and their complexes were prepared and characterized. The complexes are intended as contrast agents for molecular imaging techniques (mainly for MRI and 31 P MRS). The first part of the Thesis introduces two new versatile "phospha-Mannich" protocols performed under mild conditions. Amino-H-phosphinic acids (AHPAs) were synthesized with excess of...
Dynamics of paramagnetic complexes observed by Nuclear Magnetic Resonance
Blahut, Jan
In this Thesis, structure and dynamics of paramagnetic complexes for medical application are studied by Nuclear Magnetic Resonance (NMR). It focuses mainly on development of contrast agents (CA) for Magnetic Resonance Imaging (MRI) which is one of the most effective radiodiagnostic method nowadays. Most of the MRI CAs contains paramagnetic complexes of d- and f-metal ions. The presence of unpaired electron in proximity of NMR active nuclei has two main effects: paramagnetically induced shift and paramagnetically induced relaxa- tion. Both processes can dramatically change the NMR spectrum and often make it unobservable at all. Nevertheless, in many cases, acquisition of such spectra is possible and sometimes even less time-consuming than observation of diamag- netic molecules. Enhanced T1 relaxation allows faster pulse sequence repetition and increased chemical shift dispersion may lead to resolution of originally over- lapped signals. Moreover, the analysis of paramagnetic effects can provide useful information about the structure and dynamics of the studied system. Theoretical background of these effects is described in the Introduction of the Thesis. In the first part of Discussion in the Thesis, a new class of contrast agents for 19F-MRI based on nickel(II) and cobalt(II/III) ions is introduced...
Dynamics of paramagnetic complexes observed by Nuclear Magnetic Resonance
Blahut, Jan ; Hermann, Petr (advisor) ; Botta, Mauro (referee) ; Dračínský, Martin (referee)
In this Thesis, structure and dynamics of paramagnetic complexes for medical application are studied by Nuclear Magnetic Resonance (NMR). It focuses mainly on development of contrast agents (CA) for Magnetic Resonance Imaging (MRI) which is one of the most effective radiodiagnostic method nowadays. Most of the MRI CAs contains paramagnetic complexes of d- and f-metal ions. The presence of unpaired electron in proximity of NMR active nuclei has two main effects: paramagnetically induced shift and paramagnetically induced relaxa- tion. Both processes can dramatically change the NMR spectrum and often make it unobservable at all. Nevertheless, in many cases, acquisition of such spectra is possible and sometimes even less time-consuming than observation of diamag- netic molecules. Enhanced T1 relaxation allows faster pulse sequence repetition and increased chemical shift dispersion may lead to resolution of originally over- lapped signals. Moreover, the analysis of paramagnetic effects can provide useful information about the structure and dynamics of the studied system. Theoretical background of these effects is described in the Introduction of the Thesis. In the first part of Discussion in the Thesis, a new class of contrast agents for 19F-MRI based on nickel(II) and cobalt(II/III) ions is introduced...
From conventional to special mass spectrometry imaging applications
Vrkoslav, Vladimír
The use of desorption ionization techniques for the distribution of molecules in both typical and non-standard applications was described.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.